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Notes 
First Cumulant of the Dynamic Structure Factor 
for Rigid Rods and Semiflexible Chains 
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Recently, Wilcoxon and Schurrl and Maeda and Fujime2 
have derived expressions for the first cumulant r ( q )  of the 
dynamic structure factor for rigid rod molecules, valid for 
all magnitudes q of the scattering vector, and with proper 
attention to anisotropy of translational diffusion. The two 
results agree numerically but were left in the form of 
summations or series expansions. One of our objects in 
this note is to exhibit a more compact closed form, which 
is equivalent to resumming the series. For semiflexible 
macromolecules, no completely general results for the first 
cumulant are yet available, but one of the analytically more 
tractable models, which gives surprisingly good results, is 
the secalled “sliding rod” model introduced by Benmouna, 
Akcasu, and D a ~ u d . ~  Again, the authors presented their 
result in series form, and here we can also offer a closed 
form, obtained by going from a discrete set of points to 
a continuous limit. The closed expressions, aside from 
questions of taste, may be handier for the fitting of ex- 
perimental data. 

Following the Maeda-Fujime approach: we show that 
D,,,(q) = I’(q)/q2 can be written in a more compact 
“analytical” form. Our starting point is the definition4 

(p*(q)Cp(q)) 
( p * ( q ) p ( s ) )  

r ( q )  = 

where the continuous density for a rod is given by 

p is the cosine of the angle between q and the rod direction 
and R denotes the position of the center of mass. The 
dynamical operator C can be separated into a translational 
part -VRDpVR and a rotational part -OF, where DT is the 
translational diffusion tensor with transverse and longi- 
tudiual components D ,  and D,, ,  is the totatory diffusion 
coefficient, and P is the angular momentum operator. I t  
is straightforward to obtain 

where D is the average diffusion coefficient D = ( 2 0 ,  + 
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D , , ) / 3 ,  A = 2(D,, - D , ) / 3  represents anisotropy, and j,(x) 
is the spherical Bessel function. The p integrations in eq 
3 can be performed and yield the result 

with 

The large qL limit of eq 4a is 

A eL2 lim D,,,(q) = D - - + - 
qL-m 2 1 2  (5) 

In the sliding rod model,3 the chain behaves as a rigid 
rod for lengths smaller than a characteristic length 1 (which 
is a measure of stiffness), whereas longer lengths follow 
Gaussian statistics. The continuous limit of the first cu- 
mulant which can also be written as4 

( qD(Rij).qeiqRv) . .  

i j  

is taken in eq 12 of ref 3 to yield 

with 

In Figure 1 we compare (q212/4)S(q) vs. q1/2 for an infi- 
nitely long sliding rod chain with similar results for 
wormlike chains given by des Cloizeaux5 and Koyama.6 
Note that these authors define the structure factor dif- 
ferently and that in this infinite chain limit the charac- 
teristic length 1 can be identified as the Kratky-Porod 
wormlike chain statistical Kuhn length.7 Note also that 
the oscillations in curve 1 are an artifact of the sliding rod 
model for which the chain goes from a rigid rod to a 
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Figure 1. Variation of (q212/4)/S(q) vs. q1/2 for an infinite 
semiflexible chain as given (1) by the sliding rod model, (2) by 
Koyama, and (3) by des Cloizeaux. 

Gaussian coil discontinuously. When the hydrodynamic 
interaction is preaveraged 

sin (q l )  

ql 
+ 

In these expressions, the sine integral, cosine integral, and 
the incomplete y function have been used: 

x sin t cos t d t  - t Si (E) = 1 dt  t; c i  ( x )  = -1 
0 

Also a cutoff hydrodynamic thickness d associated with 
the chain has been introduced to avoid a singularity in F(q)  
at  zero contour length. The rigid rod limit of the apparent 
diffusion coefficient D,,,(q) = I ’ (q) /q2  is obtained for 1 = 
L as 
D 8 R R ( q )  

sin (qL) + Ci (qL)  - Ci (qd) - 

where Do = k,T/{N. Equations 10 and 4a have the same 
small qL limit 

lim D,,,(q) = Do + 2Do[ln ( L / d )  - 11 (11) 

if both the free-draining and nondraining values are con- 
sidered to define D as D = Do + 2D0[ln ( L / d )  - 11. Note 
that when the length of the rod becomes large, eq 10 be- 
comes 

9 4  

lim D,,,(q) = 
qL--.. ?r 

(12) 
where the expansion limqd+ Ci (qd) N 0.577 + In (qd) has 
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been used. Equation 12 is different from eq 5 .  In eq 12, 
D,,,(q) increases linearly with qL for a fixed D whereas 
in eq 5 it reaches a plateau value at  large qL. As pointed 
out before?sg this discrepancy comes from the fact that eq 
6 uses the full configuration space whereas eq 1 includes 
rigid constrainsts a t  the outset. For example, eq 6 gives 
for freely jointed chaindo the same limit a t  large q as for 
flexible chains. We therefore conclude that the sliding rod 
model, as originally presented, i.e., based on eq 6, is valid 
for semiflexible chains with a small degree of stiffness, Le., 
close to flexible coils. 

For nonpreaveraged hydrodynamic interaction, the 
analysis is more involved but tractable to a point. For 
simplicity we present the infinitely long chain result only: 

+ Ci (q l )  - Ci (qd)  + 1 sin (ql)  
F(q)  = - 3aql 

(13) 

The remaining integrations over the variable z would have 
to be performed numerically. 

Using this continuous limit of the sliding rod model, 
Stockmayer and Hammouda have estimatedll corrections 
to the first cumulant due to a small degree of stiffness (1 
N 20 A for polystyrene); these corrections have been found 
to be small. 
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In our recent papers,lS2 we reported that bulk cis-poly- 
isoprene (cis-PI) exhibits dielectric relaxation due to 
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